電熱熔渣銲接對箱型柱柱板材質之影響

The Effect of ESW of Material Properties of Box Column Plates

1梁宇宸,2陳正誠

1. 聯邦工程顧問公司 專案經理

2. 台灣科技大學 營建工程學系 教授

1. 概述

台灣及日本高層建築鋼結構中,習慣使用箱型柱,且鋼柱與鋼梁 間絕常以剛性接頭連接(圖1)。為維持鋼柱與鋼梁間應力傳遞之平 順,箱型柱內需設置橫隔板,且橫隔板四邊以全滲透銲道與柱板連接。 工程實務上,考慮到銲接可及性、銲接品質控制以及變形控制的因素, 橫隔板與柱板間通常至少有一雙對邊使用 ESW (Electro Slag Welding) 或 EGW (Electro Gas Welding)進行銲接,EGW 雖然入熱量較低,但其 銲接過程中排渣不易,銲道常有瑕疵產生。

目前國內除了中鋼構舊廠尚有機具外,中鋼構新廠以及國內其他 鋼構廠在箱型柱柱內橫隔板之銲接均已 ESW 為主力。但是 ESW 之入 熱量非常高,通常介於 450 至 1000 kJ/cm 之間,高於其他銲接方法之 入熱量(表 1),對銲道附近材質的改變甚巨。由於橫隔板與柱板的 ESW 銲接位於梁柱接頭附近,在地震作用下梁柱接頭附近鋼材之應力 及應變皆很大,因此 ESW 所帶來的鋼材材質改變與結構物的耐震安 全性也就有密切的關係。

由過去梁柱接頭試驗結果可發現,有些試體在鋼梁還未充分發展 塑性轉角前,柱板即在 ESW 熱影響區內產生破壞,嚴重影響結構耐 震性能與安全。我國規範與美國 AISC 規範早已對耐震鋼材有明確的 規定[1]~[3]。例如同樣是強度 Gr.50 等級之鋼材,國內常用的 SN490B、 SN490C 及美國的 A992 鋼材(A992 為型鋼之規定)均屬於耐震鋼材。 同樣是耐震鋼材,A992 及 SN490 等級其實有所區別,兩者製程不同, 雖然強度相近但基本的金相組織不同(如圖 2[4]),所帶來的一些物理 性質一不相同。圖 2 中白色的組織為肥粒鐵(Fettite),屬具普通強度 有韌性;黑色的組織為波來鐵(Pearlite),屬具高強度低韌性。至於 何者較適合 ESW 銲接,本文經由一系列銲接後性能比較,並給於適 當的建議。

ESW 施作時需一雙對邊同時進行,如圖 3(a)所示,以控制銲接變 形。圖 3(b)所示為 ESW 銲接熔池垂直剖面示意圖,ESW 銲池中心的 溫度可高達 1900℃,銲池邊緣約 1600℃[5],銲池(或熔融區)會侵 入母材及背襯板,且範圍相當大,如圖 3(c)。此外,ESW 熱循環延時 甚長,使熔融區金屬固化極為緩慢,易產生粗大之固化結構 (solidification structure) [5]。ESW 不但熔融區範圍很大,熱影響區(Heat

Affected Zone -HAZ) 之範圍也很大。圖 4 為試驗試體某一梁柱接頭區,梁翼板-SMAW 銲道-箱型柱板-ESW 銲道-横隔板剖面(圖 1 之 B-C-D Zone) 之巨觀結構[4]。

在此例中,柱板厚度為 50 mm,而 ESW 侵入柱板達 12 mm,熱 影響區範圍達 35 mm,遠大於 SMAW 之熱影響區尺度(約 4mm)。ESW 銲道及其周圍區域,可分成熔融區(FZ)及熱影響區,溫度高於 1500℃ 的範圍屬於熔融區,溫度介於 1500℃至 700℃的範圍屬於 HAZ。

又依據鋼材顯微組織,HAZ 可細分成粗晶熱影響區(Coarse Grain Heat Affected Zone, CGHAZ)、細晶熱影響區(Fine Grain Heat Affected Zone, FGHAZ)及臨界間交互熱影響區(Inter-Critical Heat Affected Zone, ICHAZ)等 3 個次分區,其特徵溫度範圍分別為 1500℃至 1100℃、1100℃至 900℃及 900℃至 700℃[6],其中又以 CGHAZ 的韌 性最差。梁柱接頭中 ESW 之背襯板與柱板間有一存在之間隙(圖 3(c)),間隙末端即熔融區與 CGHAZ 之交界處,破壞極容易沿著此交 界處靠近 CGHAZ 發展,故柱板 CGHAZ 之衝擊韌性以及其在柱板內 之範圍大小,實有探討之必要。

本文以試驗及 FEM 模擬之方式,探討 ESW 對鋼柱板材質之影響 程度。

試驗方面總共製作 6 組實尺寸箱型柱,柱板使用 3 種不同板厚之 A992 及 SN490B 窄幅鋼板。在箱型柱 ESW 銲接時,進行銲道附近柱 板表面溫度之量測,於完成鋼梁接合後,在 B-C-D Zone 柱板 HAZ 內, 擷取 CVN 試片,進行衝擊試驗。未與鋼梁結合之部位,則擷取整個 柱板厚度範圍(包含 HAZ),進行巨觀與微觀組織之觀察。

FEM 分析可模擬 ESW 程序所產生之溫度場,並與試驗時柱板表 面溫度量測結果,印證其可靠度,進而建立 FEM 模型。FEM 分析可 應用於模擬 ESW 銲接時對鋼柱產生之熱循環,不但經濟還可以得到 鋼材溫度分佈詳細的資料,根據分析得到之峰值溫度與微觀結構之特 徵溫度相比對,可判斷 HAZ 次分區之範圍,並瞭解 ESW 銲接對柱板 材質之熱影響,讓 FEM 分析可以廣泛運用於工程實務上。

2. 柱板母材性質

鋼胚在鑄造過程中,除了寬度兩端外,厚度中央常有偏析之硫化 物及介在物存在。箱型柱所使用之鋼板較厚,鋼胚軋延後厚度中央仍 然留有硫化物及介在物,讓厚度中央附近鋼材之機械性質變差,尤其 在厚度方向影響更大。圖5為同一鋼板中央與邊緣處,鋼材軋延方向 之衝擊試驗後之破斷面[7],一般梁柱接頭鋼梁均與柱板寬度中央附近 相接,且柱板在厚度方向承受很大之應力,故此處為關切之重點。

2.1 機械及化學性質

母材為 ASTM A992 及 CNS SN490B 之窄幅鋼板(universal mill plate),同一鋼種皆來自同一爐號之鋼液,兩材質鋼液之化學成分如表 2 所示,A992 以傳統之單向控制軋延 (conventional controlled rolling, CCR)方式生產,SN490B 則採熱機處理(Thermo Mechanical Controlled Processes,TMCP)的溫控軋延。兩種材質鋼板之寬度為 650mm,長度 為 1400mm,厚度有 3 種,分別是 32mm、40mm 及 50mm。鋼板之材 質,包括化學性質與機械性質,隨著寬度方向位置之不同而異,且具 有不可忽略之變異性。

標準材料檢驗中,試片取樣位置都訂在四分之一寬度處,如圖 6 中之「Quarter」位置,為了解其他位置上的差異,本文還增加了邊緣 「Edge」及板寬中央「Center」兩個位置之試驗。上述 3 種厚度之鋼 板,其四分之一寬度處之化學性質、碳當量及軋延方向之機械性質(除 CVN 外)如表 3 所示。由表 3 可發現,上述母材鋼板材料試驗結果均 滿足 ASTM A992 及 CNS SN490B 之要求,有關 CVN 之測試敘述於後。

箱型柱柱板厚度方向會承受很大的應力,因此厚度方向之機械性質為本研究重點之一。厚度方上之機械性質,一般以厚度方向拉力試片之拉力試驗為之,並以試片之斷面縮率(Reduction of Area, RA)為延

展性之指標(如 CNS SN490C 之規定)。本研究亦進行母材厚度方向 之拉力試驗,拉力試片為圓棒狀,於四分之一寬度處(Q)取樣,母 材鋼板厚度 40mm 及 50mm 者,其拉力試片之尺寸分別如圖 7(b)及 7(c) 所示,測試出之斷面縮率(RA)列於表 3。A992 板厚 40mm 厚度方 向之斷面縮率為 0.25,板厚 50mm 之鋼板則為 0.44,兩者之差異性頗 大。SN490B 板厚 40mm 厚度方向之斷面縮率為 0.51,板厚 50mm 之 鋼板則為 0.62,差異較 A992 小。但若以厚度方向延展性需求來看, 兩者都合乎 CNS SN490C 標準 0.25 之規定。由於 32mm 厚之鋼板厚 度不足,因此未進行厚度方向拉力試片之試驗。

本研究還進行一系列母材鋼板之 CVN 試驗,探討材料在軋延方向及厚度方向,各種厚度母材動態衝擊下能量吸收之容量。

軋延方向及厚度方向之試片,分別在寬度端部(E)、寬度四分之 一處(Q)及寬度中央處(C)取樣,如圖8所示。軋延方向 CVN 試 片之V槽與厚度方向平行;厚度方向 CVN 試片之V槽與軋延方向平 行,V槽尖端位於厚度中央。軋延方向 CVN 試驗,每種厚度之鋼材 在每個寬度位置(包括 E、Q 及 C),分別取1組10個試片,兩種材 質合計180個試片。厚度方向 CVN 試片之取樣位置及取樣個數同軋 延方向 CVN 試片,亦是180個試片。CVN 試片乃根據 ASTM E 23 Type A 之規定製作,其尺寸為 10×10×55 mm。CVN 試片之長度為 55mm, 已超過鋼板之厚度,厚度不足之部分以極低入熱量之亞銲填補之,並 以巨觀腐蝕之方式,確定 V 槽範圍內材質未受銲接之影響。所有 CVN 衝擊試驗均在 0℃下進行。

分析 CVN 衝擊試驗數據時,假設每組 10 個數據為常態分佈,計 算其平均值及標準差,落在 95%信心強度(1.65 倍標準差)範圍外之 數據予以剔除,並重新進行統計分析。重複上述步驟,直至所有被採 用之數據均在 95%信心強度範圍內,並取其平均值代表該組試片之 CVN 值,試驗結果列於表 4(a)及表 4(b)。圖 9 為軋延方向及厚度方向 CVN 值在寬度方向之分佈情況。

軋延方向 A992 鋼材之 CVN 值由板邊緣(E) 至板中心(C)介於 167J 至 31J 之間(註:試驗溫度為 0℃),變化相當大,但皆高於 27J, 也比 AISC 341[5]耐震鋼材所要求之 21℃ 27J 高。軋延方向 SN490B 鋼材之 CVN 值板邊緣(E) 至板中心(C)介於 224 至 28J 之間,變 化也相當大,但也皆高於 27J。由上述兩種鋼材質之軋延方向可以直 接發現,取樣位置對 CVN 值有很大的影響,不論板厚大小,CVN 值 以邊緣(E)最大,四分之一寬度處(Q)次之,寬度中央最小,其中 又以 40mm 及 50mm 厚度鋼板在中央處之差異較明顯。寬度中央

(C), A992 母材 32mm 厚鋼板之 CVN 值高達 132J,比 40mm 厚鋼板之 31J 高出 325%,比 50mm 厚鋼板之 48J 高出 175%。SB490B 母材
32mm 厚鋼板之 CVN 值高達 173J,比 40mm 厚鋼板之 61J 高出 184%,比 50mm 厚鋼板之 28J 高出 517%。

A992 母材厚度方向之 CVN 值介於 64.7J 至 8.1J 之間,比軋延方 向之 CVN 值低很多。同樣的 SN490B 母材厚度方向之 CVN 值介於 86J 至 13J 之間,亦比軋延方向之 CVN 值低很多。兩種材質取樣位置對 CVN 值也有影響。不論板厚大小,CVN 值以邊緣(E)最大,四分之 一寬度處(Q)及寬度中央(C)較小,其中又以 32mm 厚度鋼板之差 異較明顯。40mm 及 50mm 厚鋼板,所有同一取樣位置之 CVN 值都非 常接近,都比 32mm 厚鋼板低。厚度方向 CVN 值在四分之一寬度處 (Q)及寬度中央(C)較小,就一般鋼梁對箱型柱之接合而言,除了 使用窄幅鋼板,一般最大宗的還是以 4 呎×10 呎鋼板進行裁切,接合 範圍免不了要與 CVN 值較小之部位重疊,所以較低衝擊吸收能量之 範圍,為探討 ESW 影響之主要依據之一。

2.2 母材金相微觀組織觀察

母材顯微組織觀查兩種材質3種厚度鋼板之微觀組織如圖10及圖 11所示。由圖中可看出,不論鋼板厚度大小,波來鐵層狀組織沿著軋

延方向延伸,因此在進行厚度方向CVN試驗時,斷裂面沿著波來鐵層 狀組織發展,導致較低的CVN值(圖9)。至於軋延方向之CVN試驗, 斷裂面與層狀組織垂直,斷裂面通過肥粒鐵及波來鐵,會有較高之 CVN值(圖9)。

由圖10及圖11也可以看出,兩種材質晶粒的尺寸隨著板厚之增加 而增大,相同板厚A992晶粒尺寸均大於SN490B。隨著板厚由32mm增 加至50mm,A992鋼材軋延方向之CVN值,由147J(32mm)降至127J (40mm)及106J(50mm),厚度方向之CVN值由17.0J(32mm)降至 9.0J(40mm)及8.6J(50mm);SN490B鋼材軋延方向之CVN值,由186J (32mm)、186J(40mm)略降至156J(50mm),厚度方向之CVN值 由31.0J(32mm)降至27.0J(40mm)及14J(50mm),兩個方向之CVN 值,SN490B均高於A992,尤其厚度方向可以看出SN490B鋼種之優 勢,這些現象均可由金相觀察來驗證CVN試驗。

在母材金相試驗中,可以發現兩種材質鋼板厚度與晶粒大小相 關,板厚t_c=32晶粒最小,板厚t_c=40次之,板厚t_c=50晶粒最大。A992 系列鋼板晶粒尺寸長軸約200~300μm,而SN490B系列鋼板晶粒尺寸 長軸約150~200μm; SN490B板厚32mm之晶粒尺寸,其短軸為30~ 50μm,板厚50mm之晶粒尺寸,其短軸為50~70μm。

3. ESW銲接後柱板材質之變化

銲接後試驗包括:銲接時柱板表面溫度量測,柱板厚度方向之 CVN衝擊試驗、巨觀腐蝕、微觀結構觀察。

3.1 測試試體之規劃

試驗試體盡量模擬梁-柱交接處之結構與銲接細部,每種柱鋼材各 製作2組Type A試體(柱板厚度分別為32 mm及50 mm)如圖12(a)所 示,及1組Type B試體(柱板厚度40 mm)如圖12(b)所示。Type A 試 體包括一支長7000 mm之箱型柱、5段長1000 mm之H梁(B1a、B1b、 B2a、B3a、B3b)及6塊厚度50 mm之柱內橫隔板(D1~D6),橫隔板 材質均與柱板相同。Type B試體包括一支長4000 mm之箱型柱、3段長 1000 mm之H梁(B1a、B2a、B2b)及6塊厚度50 mm之柱內橫隔板(D1 ~D4)橫隔板材質均與柱板相同。

所有箱型柱之斷面皆為475 mm×650 mm,如圖12(c),由兩塊寬度 475mm及兩塊寬度550~586 mm之窄幅鋼板組成(固定箱型柱外尺 寸)。寬度475 mm之柱板由寬度650 mm之窄幅鋼板單邊裁切而成,裁 切面位於窄幅鋼板四分之一寬度處,因此寬度475mm柱板之寬度兩 端,分別為窄幅鋼板之邊緣(標示為「E」)及四分之一寬度(標示為 「Q」)處。

橫隔板與寬度650 mm之柱板間,以兩道GMAW施作之全滲透銲連接,橫隔板與寬度475 mm之柱板間,以兩道ESW施作之全滲透銲連接。H梁與箱型柱寬度475 mm之柱面連接,梁翼板寬度中線與柱板中線對齊,如圖12(c)。所有ESW施作之銲道,其寬度皆為25 mm、厚度皆為50 mm[圖3(c)],ESW銲接參數如表5所示。雖然銲道尺寸都相同, 但是考慮到散熱速率之不同,柱板越厚者入熱量越高,由較小板厚到最大板厚,入熱量分別紀錄於表5。因隔板厚度50mm,為讓母材與銲材充分熔透,進行ESW時,銲線沿銲道厚度方向擺動,擺幅為20 mm。 每塊橫隔板之2道ESW全滲透銲道同時施作[圖3(a)]。

所有的鋼梁皆採用BH600×300×22×50組合斷面,材質均為A992鋼 材,梁與柱之接合以翼板全滲透銲腹板拴接之型式,如圖12(d)所示。 梁翼板與柱翼板之全滲透銲道採用SMAW施作,銲接姿勢皆採用水平 銲。除了Type A試體B1b梁外,所有的梁柱接頭在翼板銲接前,將所 有的螺栓安裝完成(包括施加規定之預拉力),如圖12(d)左側梁所示。 至於Type A試體之B1b梁,其梁柱接頭在翼板銲接前,僅將4支高強度 A325螺栓安裝完成,如圖12(d)右側梁所示。

3.2 ESW銲接過程中之溫度量測

A試體之D3橫隔板在施作ESW(即E3a及E3b銲道)時,於TM1區

[圖12(a)]進行鋼板表面溫度量測;B型試體之D2橫隔板在施作ESW(即 E2a及E2b銲道)時,於TM2區[圖12(b)]進行鋼板表面溫度量測。進行 鋼板表面溫度量測時,所有的鋼梁皆尚未連接至箱型柱。

總計設置24個K型熱偶線(編號TC1至TC24),進行銲接時柱板表 面溫度之量測,測點分佈如圖13(a)所示。TC1~TC9設置於銲道厚度中 央投影處,TC10至TC24則沿著與銲道垂直之方向配置。ESW施作由 下而上進行之,銲接前5分鐘開始量測溫度,溫度約每3秒量測一次, 數據由自動資料收集系統收集並儲存於電腦中,每道銲道施作需時約 40分鐘,溫度的量測則歷時約75分鐘,詳細溫度歷時見圖14。每一組 試體各進行一次柱板溫度量測,因溫度量測與鋼種材質無關,故選用 A992材質之試體作為量測對象,總共完成3次柱板溫度量測試驗。圖 13(b)所示為銲接溫度量測之情況。

3次柱板溫度量測試驗之TC1至TC9溫度歷時,如圖14之實線所 示。電熱源逐漸靠近測點時,測點的溫度也逐漸上升,電熱源之位置 與量測點間有板厚的距離,因熱傳之時間差,銲接時可觀察到在電熱 源稍微通過測點位置後,才量測到最高溫度,然後隨著電熱源逐漸遠 離測點,測點的溫度也逐漸下降。所示曲線顯示不論板厚大小,測點 位置越高最高溫度也越高,且溫度下降的速率也越大。自開始銲接起

算2小時後,所有測點之溫度收斂到150℃左右,然後均勻降至室溫。

各測點量測到的最高溫度以 $(T_i)_{max}$ 表示之(其中*i*代表測點阿拉伯數 字編號),並彙整於表6。令柱板厚度32 mm、40 mm及50 mm試體 $(T_i)_{max}$ 之平均值,分別為 T_{ave}^{32} 、 T_{ave}^{40} 及 T_{ave}^{50} ,由表6可知其值則分別為931、750 及628℃。上述數據顯示,雖然入熱量隨著柱板厚增大而增加,但是最 高溫度平均值卻反而隨著板厚越大而越低。所有試體皆以 $(T_s)_{max}$ 之溫度 最高, t_c 為32 mm時 $(T_s)_{max}$ 達1033℃, t_c 為40 mm時 $(T_s)_{max}$ 等於880℃, t_c 為 50 mm時 $(T_s)_{max}$ 等於744℃。

當鋼板溫度達到700℃或以上時,鋼板的微觀組織會產生變化,因此鋼板溫度達到700℃或以上之區域,即屬銲接熱影響區(HAZ)。 t_c 為32 mm之試體,TC1至TC9位置之鋼板表面溫度皆高於700℃,顯示整條銲道長度內,柱板全厚都是熱影響區; t_c 為40 mm之試體,TC3以上柱板全厚皆為熱影響區; t_c 為50 mm之試體,TC9以上柱板全厚為熱影響區。

圖15中實線所示為銲道中心線左側測點之溫度歷時。測點離銲道中心線越遠,所測得之溫度越低,且產生最高溫度的時間點越往後延。圖16所示為3組對稱於銲道軸線測點,TC14與TC22、TC15與TC23、TC16與TC24之時間歷時,每組測點之兩條溫度歷時曲線皆非常接

近,顯示溫度之分佈頗為對稱。

3.3 ESW銲接後巨觀與微觀觀察

鋼材之巨觀結構以巨觀腐蝕試驗為之,鋼材之微觀結構則以光學 顯微鏡觀察之,兩者使用同一個試片進行之。試片稱為OM試片,取 樣之剖面位置如圖17所示,高度在TC6之位置,每種板厚試體各取一 片試片,依據板厚分別稱為為OM32、OM40及OM50,共3個試片。

圖18顯示OM試片之巨觀組織。OM32原柱板厚度範圍包括FZ、 CGHAZ、FGHAZ,而沒有ICHAZ及BM,柱板中央位於粗晶區,柱板 外表面為細晶組織。OM40原柱板厚度範圍除了FZ、CGHAZ、FGHAZ 外還包括ICHAZ,但仍然沒有BM,OM40柱板中央位於細晶區,柱板 外表面為ICHAZ。OM50原柱板厚度範圍內包括FZ、CGHAZ、 FGHAZ、ICHAZ及BM。OM32之(T_6)_{max}最高(957°C),因此晶粒組織 種類最少,OM50之(T_6)_{max}最低(637°C),因此晶粒組織種類最多。

FZ之大小與銲接入熱量成正相關,OM32及OM40之入熱量在835 ~855 kJ/cm之間,比OM50之979 kJ/cm少,因此OM32及OM40之FZ(分 別為10.5mm及10.2mm)比OM50之12.4mm小。HAZ及其各次分區之 大小與板厚有密切的關係,如表7所示,基本上板厚越大,HAZ及其 各次分區越小。 上述OM試片以光學顯微鏡觀察兩個位置,包括W-TC及W-S(圖 17)之微觀結構,W-TC位於柱板厚度中央(與母材之Q-TC相對應), W-S位於離柱板外表面2mm處(與母材之Q-S相對應),圖19及圖20分 別為A992及SN490B材質在W-TC及W-S之微觀組織。

就柱板厚32 mm試片而言,W-TC[圖19(d)及圖20(d)]有明顯的晶粒 粗大化現象,金相組織由原本肥力鐵與波來鐵交互之層狀組織 [Q-TC,圖10(d)及圖11(d)],變成內含大量費德曼組織(Widmanstaetten structure)及高溫肥粒鐵(allotriomorphic ferrite)之粗大沃斯田鐵,為 CGHAZ之微觀結構。W-S[圖19(a)及圖20(a)]的組織與母材[Q-S,圖10(a) 及圖11(a)]類似,但是晶粒變大。W-S靠近鋼板表面,所受束制較小, 且W-S冷卻時間Dt_{8/5}(註:800-500℃之降溫時間)較長,雖然W-S在 巨觀腐蝕上之判定為FGHAZ,但是晶粒有再成長的空間與時間,晶粒 仍然變大。雖然兩種材質在CGHAZ中均具肥粒鐵內含大量費德曼組 織,但還是可以由金相比較出,SN490B晶粒較A992小。

柱板厚40mm之試體,與Q-TC[圖10(e)及圖11(e)]相較之,W-TC[圖 19(e)及圖20(e)]之組織沒有改變但是晶粒有明顯細化的現象,為 FGHAZ之微觀組織。W-S[圖19(b)及圖20(b)]基本上位於ICHAZ,與 Q-S[圖10(b)及圖11(b)]相較之,組織及晶粒大小皆非常類似。另一觀 察顯示ESW銲接後之試片,SN490B鋼材之晶粒大小還是小於A992鋼材。

柱板厚50mm之試體,與Q-TC[圖10(f)及圖11(f)]相較之,W-TC[圖 19(f)及圖20(f)]之組織沒有改變但是晶粒有細化的現象,為介於 FGHAZ與ICHAZ之微觀組織。W-S[圖19(c)及圖20(c)]基本上位於 BM,與Q-S[圖10(f)及圖11(f)]相較之,組織及晶粒大小基本上是一樣 的,表此處未受熱影響。

3.4 箱型柱柱板之衝擊韌性

柱板厚度32mm之試體為A型試體[圖12(a)],試體製作完成後,於 E1a、E2a銲接位置附近,擷取柱板厚度方向之CVN試片,並稱為AM32 與SN32試片;此外亦於E1b、E2b等銲接位置附近,擷取柱板厚度方向 之CVN試片,並稱為AM32U試片。類似的情況,柱板厚度50mm之試 體亦為A型試體,試體製作完成後,於相同位置擷取AM50與SN50試 片,及AM50U試片。柱板厚度40mm之試體為B型試體(圖12(b)),試 體製作完成後,在E1a、E2a等銲接位置擷取柱板厚度方向之CVN試 片,並稱為AM40與SN40試片。試片編號及製作方式之描述列於表8 中。

柱板厚度方向之CVN試片有兩種,分別稱為CC-HAZ及

CB-HAZ,其在柱板厚度方向的位置如圖21(a)所示。其中CB-HAZ試 體之試驗結果[4]不在本文討論,本文針對CC-HAZ試片之試驗及其結 果討論之。CC-HAZ試片橫跨SMAW銲道、柱板及ESW銲道,其V形 凹口位於柱板厚度中央,V形凹口之走向與鋼板軋延方向平行。 CC-HAZ試片之平面位置如圖21(b)所示,所有CC-HAZ試片皆在深翼 板寬度範圍內,且在柱板原料(即650mm寬之扁鋼)中央二分之一寬 度內。CVN試片測試溫度為0℃。

比較梁端束制之影響,AM32及AM32U試片之CVN值分佈如圖 22(a)所示,AM50及AM50U試片之CVN值分佈如圖22(b)所示,上述 CVN值之統計結果如表9所示。AM32及AM50試片取自於A型試體之 E1a及E2a處,梁翼板與柱板銲接時,腹板所有螺栓(10顆)已安裝完成, 銲接束制較大; AM32U及AM50U試片,銲接時僅4顆腹板螺栓安裝 完成,銲接束制較小。AM32及AM32U試片之CVN平均值分別為5.3J 及5.9J,相差僅10%,與兩者之變異係數(36%及30%)比較,其差異 基本上可以忽略。AM50及AM50U試片之CVN平均值分別為22.7J及 19.6J,相差約16%,與兩者之變異係數(44%及59%)比較,其差異 基本上可以忽略。圖22及表9之數據顯示,螺栓安裝數量不同引致之銲 接束制差異,對柱板厚度中央之CVN值沒有明顯的影響。

由於AM32與AM32U之差異可忽略,因此將兩組數據合併並稱為 AM32C數據,據以進行下一步之數據分析與討論。AM50與AM50U亦 根據相同理由,合併成AM50C數據。

圖23所示為ESW 銲接後A992(AM32C,AM4,AM50C)及SN490B (SN32,SN40,SN50)之CVN值分佈情況,原始數據之平均值與標準差 列於表10。同母材CVN值之處理方式,假設每組CVN值為常態分佈, 計算其平均值及標準差,落在95%信心強度範圍外之CVN值予以剔 除,重複上述步驟,直至未被剔除的CVN值均在95%信心強度範圍 內。處理過之CVN值,其平均值與標準差亦列於表10,其分佈情況如 圖24所示。

AM32C試片之原始CVN值有71個,平均值為5.6J,變異係數為 0.33。處理過之CVN值剩下64個(7個數據被捨棄),平均值(5.2J)與 原始數據相當接近,變異係數(0.20)則下降達39%,處理過之數據 可信度較高。如前所述,AM32C試片之V形凹口位於CGHAZ,因此認 定CGHAZ 之CVN平均值為5.2J。與母材之16.2J比較,CGHAZ區之 CVN值大幅下降67.9%。

AM40試片之原始CVN值有36個,平均值為37.8J,變異係數為 0.22。處理過之CVN值剩下32個(4個數據被捨棄),平均值(35.7J)

與原始數據相當接近,變異係數(0.16)則下降達27%,處理過之數 據可信度較高。如前所述,AM40試片之V形凹口位於FGHAZ,因此 認定FGHAZ之CVN平均值為35.7J。與母材之10.3J比較,CGHAZ區之 CVN值大幅提升247%。

AM50C試片之原始CVN值有71個,最高達54J,比FGHAZ之36J 還高,最低為8J,比CGHAZ還高一些,平均值為21.1J,變異係數則高 達0.52。由巨觀腐蝕觀察得知,AM50C試片之V形凹口位於FGHAZ與 ICHAZ之交界處,加上有些CVN值高於36J,據此判斷高於36J之試片, 其凹口可能位於FGHAZ。將71個數據中捨去7個高於36J者,剩下64個 進行數據處理。處理過之CVN值剩下52個,平均值為16.4J,變異係數 則大幅下降至0.28。判斷16.4J應可相當程度代表ICHAZ之CVN值,其 值比母材(8.4J)高出95%。

SN32試片之原始CVN值有36個,平均值為11.8J,變異係數為 0.42。處理過之CVN值剩下33個(3個數據被捨棄),平均值(10.8J) 與原始數據相當接近,變異係數(0.28)則下降達33%,處理過之數 據可信度較高。如前所述,SN32試片之V形凹口位於CGHAZ,因此認 定SN490B柱板經ESW銲後,其CGHAZ之CVN平均值為10.8J。與母 材之26.5J比較,CGHAZ區之CVN值大幅下降59.2%。

SN40試片之原始CVN值有36個,平均值為69.3J,變異係數為 0.36。處理過之CVN值剩下35個(1個數據被捨棄),平均值(67.8J) 與原始數據相當接近。如前所述,SN40試片之V形凹口位於FGHAZ, 因此認定SN490B柱板經ESW銲後,其FGHAZ之CVN平均值為67.8J。 與母材之22.5J比較,CGHAZ區之CVN值大幅提升201%。

SN50試片之原始CVN值有36個,平均值為25.2J,變異係數則高 達0.46。處理過之CVN值剩下24個,平均值為19.7J,變異係數則大幅 下降至0.20。平均值比母材(13.5J)高出45.9%,同上述A992材質, 判斷此區衝擊值應可相當程度代表SN490B柱板經ESW銲後,其 ICHAZ之CVN值。

上述柱板銲接後衝擊試驗,假設忽略柱板厚度對CGHAZ、 FGHAZ、ICHAZ等影響為前提,如以CGHAZ為例,板厚32、40及50mm 衝擊值均接近相同。

4. 有限元素數值模擬銲接

ESW 銲接之溫度量測試驗相當費時且所需費用頗高,所能進行的 試驗數量有限。此外,試驗時僅能量測鋼板表面溫度,鋼板內部溫度 之分怖仍然無法得知,試驗無法提供詳細的溫度分佈資料。使用 FEM 數值模擬來探討 ESW 施作時鋼材之溫度分佈,不但經濟還可以得到 鋼材溫度分佈詳細的資料,但是 FEM 分析的可靠度需要先被檢視並確認。

本文採用 ANSYS 套裝軟體及該軟體之六面體八節點熱傳導元素 (solid70)[8],進行暫態非線性歷時熱傳分析。

4.1 有限元素模型(FEM)

FEM 分析時模擬整個箱型柱,將會十分費時,且對分析結果之準 確度幫助有限,因此 FEM 分析之模型結構,採用 ESW 前後箱型柱長 650mm 之範圍,如圖 25(a)所示。由於幾何及邊界條件之對稱性,可 採四分之一模型結構進行分析,如圖 25(b)。FEM 網格之劃分以溫度 梯度為依據,溫度梯度越大網格密度越高,圖 26(a)及 26(b)顯示柱板 表面及橫隔板厚度中心之網格,圖 26(c)顯示柱板厚度方向及橫隔板厚 度方向之網格。

銲接前銲道位置沒有填充材料,不具熱傳導性,銲接後銲道位置 填滿銲材,具有熱傳導性,此銲接過程之現象,使用元素重生之技術 模擬之。銲道尚未填充時,給予銲道之元素極小的熱傳導係數,銲道 填充時,給予該位置銲道元素正常之熱傳導係數,並設定這些元素為 熱源,如圖 26(a)。

鋼材熱傳導之基本性質引用 Eurocode 3 [9]之規定,鋼材比熱 (specific heat of steel)及鋼材熱傳導係數(thermal conductivity of steel)皆為鋼材溫度 T 之函數,分別如表 11 及 12 所示。考慮箱型柱 之 ESW 作業通常在廠房內進行,鋼板表面之熱對流係數(thermal convective)採用 20 W/m²℃。圖 26(a)及 26(c)所示,為柱板厚 50mm 模 型結構之分析模型,及其在時間為 1493 sec 時,鋼材溫度分佈之情況 (註:圖 26(b)之溫度圖例與其他兩者不同)。

4.2 分析結果

圖 14 及 15 虛線所示,為實驗溫度量測點位置(TC1~TC21), 分析所得之溫度時間歷時。分析結果與實驗值(圖中實線)非常吻合, 比較 TC1 至 TC9 之尖峰溫度(表 6),分析值與試驗值之差異在 0.13% 至 4.63%之間,平均為 1.81%。顯示所建立之熱傳 FEM 模型,可準確 的模擬 ESW 進行時箱型柱之溫度分佈。

圖 27 為 TC6 高度處, 柱板厚度方向網格節點處[圖 26(c)]之溫度 歷時。網格節點之最高溫度隨著 a (圖 17) 增加而下降且越慢發生。 圖 28 所示為 TC6 所在高度之剖面, 銲道附近柱板所經歷最高溫度之 分佈情況。根據這些溫度分佈圖及熱影響區之不同顯微組織區域之特 徵溫度, 銲道附近柱板材質之分區如圖中所示, 圖 18 顯示實驗值與分 析值之熱影響區分區範圍,兩者之差異在合理範圍。

4.3 柱板厚度方向温度分佈

考慮電銲施作所需空間,梁柱接頭 ESW 銲道之寬度及厚度皆不 得小於 25mm。因此,梁柱接頭 ESW 銲道之寬度一般使用 25mm,銲 道厚度基本與橫隔板厚度(t_d)相同,且不小於 25mm。因此,t_d當小於 或等於 25mm 時,ESW 銲道之尺寸為 25mm×25mm,當 t_d當大於 25mm 時,ESW 銲道之尺寸為 25mm×t_d。

估計箱型柱橫隔板厚度 25mm(含)以下,其 ESW 入熱量約 450 KJ/cm,內隔板厚度 50mm,其 ESW 入熱量約 900 KJ/cm,這已包含 一般鋼結構建築 ESW 入熱量使用範圍。

圖 29 為隔板厚度 25mm(含)以下及隔板厚度 50mm、在各種柱板 厚度下其尖峰溫度在厚度方向(圖 17)之分佈情況。粗晶粒熱影響區 (CGHAZ)之衝擊韌性極低,且若施工時表面溫度達 1100℃時,易產生 柱板被熔穿之現象,由圖中顯示,橫隔板厚度 25mm(含)以下,柱板厚 度使用 20mm 可以避免熔穿,橫隔板厚度 50mm,柱板厚度使用 22mm 可以避免熔穿,實際上梁柱接頭受力亦非常複雜,若由一簡單 FEM 分 析梁柱接頭,梁受全應力達 *F*^{*u*}時,柱板受力情形如圖 30 所示(部分 柱板隱藏未顯示),從梁柱表面約 0.2 倍柱板厚度的距離,應力開始下 降小於降伏強度。由上面簡單分析結果可以保守的取 a/t_c = 0.75(圖 29)避免韌性較差之 CGHAZ 靠近梁柱表面,建議若梁柱接頭梁端銲 道有做圓角端部處理者(目前規範規定之方式),橫隔板厚度 25mm(含) 以下,柱板厚度使用 22mm,橫隔板厚度 28~50mm,柱板厚度使用 25mm,但還是應避免梁翼板厚度比柱板厚度大很多之情形發生。

5. 結論與建議

本文以實驗及 FEM 分析等方法,探討箱型柱內橫隔板與柱板間 使用 ESW 銲接接合時,柱板之溫度傳遞與分佈,以及此熱循環對柱 板材質之影響。由於梁柱接頭處柱板在厚度方向承受很大之應力,因 此厚度方向之性質為關切之重點。試驗方面總共製作 6 組斷面為 475 mm×650 mm、長度為4m至7m之箱型柱。柱板使用 A992及 SN490B 窄幅鋼板,6 組箱型柱之柱板厚度分別為 32mm、40mm、50mm 各兩 組。柱內橫隔板皆為相稱材質厚度 50mm 之材料,ESW 銲道尺寸皆為 25mm×50mm。以上鋼材及製作均委託東和鋼鐵及東鋼構製作,銲道 並經非破破檢驗核可。

銲接前後總共完成 736 個成功的衝擊實驗,在 ESW 施銲的同時, 也進行柱板表面溫度之量測。此外還進行柱板之巨觀腐蝕及微觀結構 之觀察。

除了試驗外,還使用 ANSYS 有限元素分析程式,進行銲接過程 中柱板及橫隔板溫度傳遞與分佈之模擬,並以試驗結果印證其準確性 與可靠性。綜合實驗以及分析結果,可以獲得結論如下所述。

- 鋼板軋延方向之 CVN 值,隨著板厚增加而降低,但本研究所包含 的厚度範圍內(32mm 至 50 mm),所有鋼板在 0℃之 CVN 值均遠 高於 27J。鋼板厚度方向之 CVN 值比軋延方向低很多,在本研究 0℃ 時其 CVN 值,均明顯低於 27J。
- 2. ESW 銲接過程中,根據本研究之量測數據,柱板厚度 32mm 之箱型 柱,其表面溫度可達 763~1033℃;柱板厚度 40mm 之箱型柱,其 表面溫度可達 653~880℃;柱板厚度 50mm 之箱型柱,其表面溫度 可達 540~744℃。柱板溫度超過 700℃(即熱影響區)之範圍相當 大,材質及微觀組織的改變也相當劇烈,厚度較小之柱板所受之影 響尤其嚴重。
- 3. ESW 熱影響區中,厚度方向 0℃之 CVN 值有巨大的變化。A992 鋼材,粗晶熱影響區由 16.2J 大幅降至 5.2J; 細晶熱影響區由 10.3J 大幅提升至 35.7J。SN490B 鋼材,粗晶熱影響區由 26.5J 大幅降至 10.8J; 細晶熱影響區由 22.5J 大幅提升至 67.8J。CGHAZ 對厚度 方向之衝擊韌性有嚴重的負面影響。柱板厚度越小 CGHAZ 越靠近 柱板表面,CGHAZ 所受之面外應力也越大,因此柱板厚度越小柱

板越容易被撕裂,對梁柱接頭韌性之發展不利。

- 本研究銲接後接頭最弱處 CCHAZ 之衝擊值,A992 小於 SN490B 約兩倍以上,現行規範對箱型柱板材質之使用,以 3.5t/cm²等級鋼 材為例,規定至少是 SN490B 以上等級之鋼材是合理的。
- 5. 本研究所建立之 FEM 熱傳分析模型,可以相當準確模擬 ESW 銲接 過程中鋼板之溫度分佈。就柱板表面最高溫度而言,分析結果與試 驗結果之差異,介於 0.13~4.36%,平均為 1.81%。由 FEM 分析結 果,可獲得銲道及銲道附近鋼板各點之溫度歷時,由溫度歷時可以 獲得銲道附近鋼板之峰值溫度,並據以決定柱板之結晶之分區,分 析所得之結晶分區與試驗觀察相當吻合。分析結果與試驗試驗結果 之數據顯示,所建立 FEM 分析模型之可靠性頗佳,可進一步運用 於工程實務。
- 6. 建議若梁柱接頭有做圓角端部處理者,橫隔板厚度 25mm(含)以下,柱板厚度使用 22mm,橫隔板厚度 28~50mm,柱板厚度使用 25mm,但還是應避免梁翼板厚度比柱板厚度大很多之情形發生。

誌謝

本研究成果為台灣科技大學建教合作案研發建字第 2217 號建字 0498 號,由東和鋼鐵企業股份有限公司提供經費支援建教合作,計畫 名稱為『建築結構用鋼材在銲接及結構韌性之性能研究』。東和鋼鐵及 東鋼構對研究經費及試體製作之贊助,試驗期間東鋼 <u>陳丕東 吳子富</u> 經理、<u>陳昌雄</u> 廠長 <u>吳新德</u> 課長 東鋼構 <u>馮晃麒</u> 課長及<u>邱振揮</u> 專員 之全力配合,研究生 <u>郭文隆、林俊穎、陳正偉</u>之幫忙實驗,在上述機 構及人員之大力協助下,方能使此研究順利完成,特此誌謝。

表1 建築結構銲接方法入熱量比較表

銲接方法	入熱量
	(kJ/cm)
遮護金屬電弧銲接	35
SMAW (Shielded Metal Arc Welding)	
包藥銲線電弧銲接	20~30
FCAW (Flux-cored Arc Welding)	20~30
氣體遮護金屬電弧銲接	
GMAW (Gas Metal Arc Welding)	
潛弧銲接	60~100
SAW (Submerged Arc Welding)	
電熱熔渣銲	450~1000
ESW (Electro Slag Welding)	

表2 鋼液化學成分

母材鋼板	化學	成分 (mass %)×10 ⁻³								
	C	Si	Mn	Р	S	Cu	Ni	Cr	V	Mo	Nb	C_{eq}
A992	128	229	1160	12	17	252	97	68	24	18	13	350
SN490B	139	243	1280	14	9	268	101	69	22	21	17	390

表 3 A992 及 SN490B 之機械性質及化學性質

母材鋼板 (板厚)	拉力詞	、驗結果				化學	成分	(分光	£儀,∎	nass	%)						
	$\sigma_{}$	$\sigma_{}$	YR	RA	EL	С	Si	Mn	Р	S	Cu	Ni	Cr	V	Mo	Nb	C _{eq}
	(MPa)	(MPa)	(%)	(%)	(%)	×10 ⁻²	3										
A992-32	389	514	76	-	30	140	210	1270	9	17	268	78	84	6	27	37	400
A992-40	388	515	75	25	29	140	230	1200	12	20	266	72	60	16	25	31	380
A992-50	364	519	70	44	39	120	210	1230	9	14	260	45	67	10	27	8	370
SN490B-32	393	523	75	-	28	140	230	1370	10	10	281	100	96	18	30	37	410
SN490B-40	390	522	75	51	29	120	220	1460	9	6	281	44	100	24	36	26	400
SN490B-50	387	534	72	62	42	100	210	1560	7	5	283	23	121	30	39	-	400

表 4(a) A992 母材 CVN 衝擊性質

Base metal	衝擊值	(J)							
A992	軋延方向	軋延方向 厚度方向							
$t_c(mm)$	Edge	Quarter	Center	Edge	Quarter	Center			
32	167	147	132	64.7	17.0	15.4			
40	146	127	31	20.0	9.0	11.6			
50	131	106	48	24.1	8.6	8.1			

表 4(b) SN490B 母材 CVN 衝擊性質

Base metal SN490B	衝擊值 軋延方向	(J) 1]		厚度方向	, 可	
$t_c(mm)$	Edge	Quarter	Center	Edge	Quarter	Center
32	224	186	173	86	31	22
40	216	186	61	113	27	18
50	184	156	28	83	14	13

表 5 試體 ESW 銲接參數

種類	A992			SN490B		
板厚 t(mm)	32	40	50	32	40	50
電流(I)	360	380	380	380	380	380
電壓 (V)	48	50	52	50	50	50
銲接速率(cm/sec)	0.0222	0.0222	0.0201	0.0222	0.0227	0.0194
入熱量 (kJ/cm)	778	855	979	837	837	979

表 6 試驗及有限元素分析 TC1 至 TC9 之尖峰溫度 $(T_i)_{max}$

t_c (mm)		$(T_1)_{\max}$	$(T_2)_{\rm max}$	$(T_3)_{\rm max}$	$(T_4)_{\rm max}$	$(T_5)_{\rm max}$	$(T_6)_{\rm max}$	$(T_7)_{\rm max}$	$(T_8)_{\rm max}$	$(T_9)_{\rm max}$	Avg.
32	Test(°C)	763	895	930	945	948	957	954	958	1033	
	FEM(°C)	754	905	945	961	968	972	974	978	1078	
	Error(%)	1.18	1.12	1.61	1.69	2.11	1.57	2.10	2.09	4.36	1.98
40	Test(°C)	653	684	720	727	755	769	780	784	880	
	FEM(°C)	679	710	748	766	775	780	782	785	870	
	Error(%)	3.98	3.80	3.89	5.36	2.65	1.43	0.26	0.13	1.14	2.52
50	Test(°C)	540	575	598	627	638	637	642	654	744	

FEM(°C)	545	577	602	619	629	635	638	645	734	
Error(%)	0.93	0.35	0.67	1.28	1.41	0.31	0.62	1.38	1.34	0.92

表7 熱影響區的範圍

 ≥±1	影響長度(mm	影響長度(mm)							
武力	CGHAZ	FGHAZ	ICHAZ						
OM32	7.5	>14.0	-						
OM40	6.0	7.8	>16.0						
OM50	5.1	6.6	9.3						

表 8 CVN 試體編號及描述

No.	試體編號	材質	板厚	材質	板厚	描述
		柱板	t_c	梁板	t_f	
			(mm)		(mm)	
1	AM32	A992	32	A992	50	標準型式
2	AM40		40			標準型式
3	AM50		50			標準型式
4	AM32U		32			鋼梁腹板未瑣滿螺栓
5	AM50U		50			鋼梁腹板未瑣滿螺栓
6	SN32	SN490B	32			標準型式
7	SN40		40			標準型式
8	SN50		50			標準型式

表9CC-HAZ 梁端束制與無束制 CVN 值

試片	有效試片	衝擊值	Ī
	數目	平均(J)	C.O.V
AM32	35	5.3	0.36
AMU32	36	5.9	0.30
AM50	35	22.7	0.44
AMU50	36	19.6	0.59

試片名稱	原始資料			處理後資料		
	有效試片	衝擊值 (J)		剩餘有效試	衝擊值 (J)	
	數目	平均	C.O.V	片數目	平均	C.O.V
AM32C	71	5.6	0.33	64	5.2	0.20
AM40	36	37.8	0.22	32	35.7	0.16
AM50C	71	21.1	0.52	52	16.4	0.28
SN32	36	11.8	0.42	33	10.8	0.34
SN40	36	69.3	0.36	35	67.8	0.35
SN50	36	25.2	0.46	24	19.7	0.20

表 10 A992 與 SN490B 鋼材 CC-HAZ 原始資料與處理後 CVN 值

表 11 Specific heat

Temperature (°C)	Specific heat (J/kg°C)
20? T 600	$425 + 7.73? 10^{-1}T 1.69? 10^{-3}T^2 2.22? 10^{-6}T^3$
600? T 735	$666 + \frac{13002}{738 - T}$
735? T 900	$545 + \frac{17820}{T-731}$
900£ T	650

表 12 Thermal conductivity

Thermal conductivity (W/m°C)
54- 3.33? 10 ⁻² T
27.3

(a) 立面圖

(b) A-A section

圖 2 不同製程鋼板微觀組織比較

(b) Vertical section of ESW weldment

(c) Profile of ESW weldment

圖 3 ESW 銲接示意圖

圖 4 B-C-D zone 巨觀腐蝕相片

圖 5 CVN 破斷面比較圖

圖 6 母材試驗試體取樣位置 (unit: mm)

(a) 光學顯微觀察(Optic Microscope, OM) 試片 (XZ plane)

(b) 拉力試片 (*t_c*=40 mm)

(c) 拉力試片 (t_c=50 mm)

圖7微觀組織試片及厚度方向拉力試片(unit:mm)

(a) 軋延方向CVN試片

(b) 厚度方向CVN試片

圖 8 CVN 試片擷取位置 (unit: mm)

圖9 母材衝擊值

(a) t_c =32mm Q-S

(b) t=40mm Q-S

(c) t=50mm Q-S

	and the second
manner the second second	the second of the second
a set and the set of the set	The stand and the second
	and and the second second second
and the second second	
All contractions	and the states
and the second s	web for a long the second
and the second second	The second of the second of the
ecter states a	
TTTS STATE LAND	200 um
S S Martin Start Area	

200 μm

(d) t=32mm Q-TC

(e) t=40mm Q-TC

(f) t=50mm Q-TC

圖 10 A992 母材微觀組織

(a) t_c =32mm Q-S

(b) t=40mm Q-S

(c) t=50mm Q-S

(d) t=32mm Q-TC

(e) t=40mm Q-TC

(f) t=50mm Q-TC

圖 11 SN490B 母材微觀組織

(a) Type A (t_c =32 mm and t_c =50 mm)

(b) Type B (t_c =40mm)

(c) A-A斷面

(d) 梁柱接頭細部

圖 12 試體尺寸大樣圖 (unit: mm)

圖 13 溫度量測點 TC1~TC24 分佈圖 (unit: mm)

圖 14 溫度歷時 TC1~TC9

圖 15 溫度歷時 TC10~TC21

圖 17 OM 試片取樣位置圖 (unit: mm)

圖 18 OM 試片巨觀腐蝕後相片 (unit: mm)

(a) t_c =32mm W-S

(b) t_c =40mm W-S

(c) t_c =50mm W-S

(d) t_c =32mm W-TC

(e) t_c =40mm W-TC

(f) t_c =50mm W-TC

圖 19 A992 柱板 ESW 後 OM 試片微觀組織觀察

(a) $t_c=32$ mm W-S

(b) t_c =40mm W-S

(c) t_c =50mm W-S

(d) t_c =32mm W-TC

(e) t_c =40mm W-TC

(f) t_c =50mm W-TC

圖 20 SN490B 柱板 ESW 後 OM 試片微觀組織觀察

(a) CVN試片擷取位置剖面圖

(b) CVN試片擷取位置平面圖

圖 21 CVN 試片與柱板相對應之關係 (unit: mm)

(a) $t_c=32 \text{ mm}$

(b) $t_c = 50 \text{ mm}$

圖 22 梁端銲道束制與無束制之 CCHAZ CVN 值分佈

(a) A992

(b) SN490B

圖 23 CC-HAZ 試片衝擊值分佈圖 (處理前)

(a) A992

(b) SN490B

圖 24 CC-HAZ 試片衝擊值分佈圖 (處理後)

(a) 數值模擬ESW之尺寸 (上視圖)

(b) 對稱性簡化模擬示意圖

圖 25 模擬 ESW 銲接過程之 FEM 模型 (unit: mm)

(a) 模型網格分割示意圖

(b) 數值模擬鋼柱表面溫度分佈示意圖

ESW銲道附近截斷面溫度分佈示意圖

圖 26 數值模擬溫度分佈示意圖

(a) $t_c = 32 \text{ mm}$

(b) $t_c = 40 \text{ mm}$

(c) $t_c = 50 \text{ mm}$

圖27 FEM厚度方向節點之溫度歷時曲線(unit:℃)

(a) $t_c = 32 \text{ mm}$

(b) *t_c*=40 mm

(c) $t_c = 50 \text{ mm}$

圖 28 FEM 鋼板厚度方向峰值溫度分佈圖(unit:℃)

(a) For depth £ 25 mm (heat input 450 kJ/cm)

圖 29 不同入熱量各種板厚厚度方向峰值溫度分佈圖

圖 30 柱板厚度方向應力分佈圖

參考文獻

- [1] 營建雜誌社,「鋼構造建築物鋼結構設計技術規範(一)鋼結構容許應力設計法規範及解說」,臺灣(臺北),民國 96 年 7 月。
- [2] 營建雜誌社,「鋼構造建築物鋼結構設計技術規範(二)鋼結構容許極限設計法規範及解說」,臺灣(臺北),民國96年7月。
- [3] American Institute of Steel Construction (AISC), "Seismic Provisions for Structural Steel Buildings," ANSI/AISC 341-10, AISC Inc., Chicago (IL), June 22(2010).

- [4] 梁宇宸,「電熱熔渣銲接對箱型柱柱板性能之影響」,國立台灣大學營建工 程研究所博士論文,民國一〇一年。
- [5] Debroy, T. Szekely, J. and Eager, T., "Heat generation patterns and temperature profiles in electroslag welding," METALL, TRANS. B, Vol. 11, PP.593-605 (1980).
- [6] Easterling, K., *Introduction to the physical metallurgy of welding*, Butterworths, (1983).
- [7] 黃志榮,「硫含量對 A992、SN490B 及 SN490C 結構用鋼之機械性質影響」, 國立台灣科技大學機械系碩士論文,民國 95 年。
- [8] ANSYS Structural Analysis Guide, Release 10.0, ANSYS, Inc., (2005).
- [9] Eurocode 3, Design of Steel Structures-General Rules-Part 1-2: Structural fire design, Comite Europeen de Normalisation, Brussels, Belgium.; (2005).